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Abstract

Due to the ill-posed problem of collecting data within

adverse weather scenarios, especially within fog, most ap-

proaches in the field of image de-hazing are based on syn-

thetic datasets and standard metrics that mostly originate

from general tasks as image denoising or deblurring. To

be able to evaluate the performance of such a system, it is

necessary to have real data and an adequate metric. We in-

troduce a novel calibrated benchmark dataset recorded in

real, well defined weather conditions. The aim is to give

a possibility to test developed approaches on real fog data.

Furthermore, we claim to be the first showing an investiga-

tion of heavy fog conditions up to a total degradation of the

considered images. We present a newly developed metric

providing more interpretable insights into the system behav-

ior and show how it is superior to several current evaluation

methods as PSNR and SSIM. For this purpose, we evaluate

current state-of-the-art methods from the area of image de-

fogging and verify the proposed dataset and our developed

evaluation framework.

1. Introduction

Environment perception for autonomous driving and

robotics relies on the sensor data of a large number of dif-

ferent sensors such as camera, radar and lidar. In clear

weather conditions these sensors usually provide reliable

sensor streams that can be fed into intelligent algorithms for

object detection, depth estimation or semantic understand-

ing. However, in real world scenarios including fog, haze,

snow and rain, the performance of these sensors drop signif-

icantly [7, 6, 29]. While in camera images contrast degen-

erates, lidar pointclouds lose points and get dispersed due

to atmospheric attenuation and scattering. Although a huge

effort is spent on improving sensor hardware, there will al-

ways be disturbances in the sensor data because physical

laws cannot be overcome. This impairment in the sensor
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Reference Foggy Input Clear Reference

PIX2PIXHD [66] PIX2PIXHD-CJ [8]

PIX2PIXHD-BJ [8] DEHAZENET† [10]

AOD-NET† [39] PFF-NET [47]

CLAHE [70] CYCLEGAN† [20]

DCPDN [72] FCN† [49]

Figure 1: Example image dehazing results based on our in-

troduced benchmark dataset. It enables evaluating the sys-

tem performance based on calibrated reflective targets and

assessing the contrast enhancement in depth for a challeng-

ing illumination setting in different fog densities.

stream tremendously increases the risk for a malfunction of

the successive algorithms and can have fatal consequences,

e.g. when the detection of pedestrians fails. This prob-

lem can be solved either by increasing the robustness of the
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successive algorithms or by enhancing the disturbed signal

such that the algorithms designed for undisturbed input data

can be used for disturbed input data as well. Due to the ver-

satility of disturbances in real-world scenarios, enhancing

the sensor signal itself offers a large benefit as the distur-

bance can be decoupled from the actual algorithm which

supports understanding the functioning of the whole sys-

tem.

This work focuses on the enhancement of camera im-

ages, but could be further extended to other sensors such

as lidar. Development and evaluation of algorithms for im-

age enhancement require data from both clear and disturbed

scenarios. However, most work has been done on syntheti-

cally disturbed images. For a meaningful evaluation of dif-

ferent image enhancement algorithms, real test data and an

appropriate metric are inevitable. In this work we present a

novel benchmark dataset recorded in a professional weather

chamber under defined and adjustable weather conditions.

This offers the possibility to test image enhancement meth-

ods on real data covering different fog levels.

Moreover, we present a novel metric that is adopted for

the evaluation of de-fogging algorithms. Our metric pro-

vides the opportunity to evaluate the contrast improvement

of the system in a more intuitive and interpretable way. In

order to compare the novel metric with standard image en-

hancement metrics, we show the results for various state-of-

the-art image enhancement methods. The implemented ref-

erence methods range from supervised approaches depend-

ing on pixelwise annotation to methods trained on unpaired

image data.

Particularly, we make the following contributions:

• We provide a novel benchmark dataset recorded under

defined and adjustable real weather conditions.

• We introduce a metric describing the performance of

image enhancement methods in a more intuitive and

interpretable way.

• We compare a variety of state-of-the-art image en-

hancement methods and metrics based on our novel

benchmark dataset.

2. Previous Work

Image Quality Assessment The quality of images can be

evaluated either based on ground truth data, i.e. full refer-

ence image quality assessment (FR-IQA) or by approaches

independent of ground truth data, called no reference im-

age quality assessment (NR-IQA). The mean squared er-

ror (MSE), the well-known signal-to-noise ratio (SNR) and

the peak signal-to-noise ratio (PSNR) are part of the most

often used FR-IQA measures [33, 60]. Hereby, the con-

sidered images are compared with their respective ground

truth. Nevertheless, it was shown that these metrics do

not correlate well with the perception of the human vi-

sual system (HVS) [22]. The structural similarity index

(SSIM) [67] and the visual information fidelity (VIF) [61]

are improved image quality assessment methods based on

structural information such as contrast and luminance and

natural scene statistics (NSS), respectively. For the learned

perceptual image patch similarity (LPIPS) metric [77] both

images are processed by one of three pretrained neural net-

works [63, 35, 31]. The result is the difference between se-

lected network layers weighted by pretrained values based

on human perceptual judgments [77]. A similar metric has

been applied in [40] for several popular hazing algorithms.

In many domains ground truth is not always avail-

able as for example regarding real adverse weather condi-

tions. Methods evaluating image quality without respective

ground truth data have been applied to different types of

noise [46, 69, 62, 45, 50, 48, 43, 40]. Regardless of the

availability of reference, almost all presented metrics were

developed and tested for rather standard image distortions

such as Gaussian blur, white noise or JPEG compression.

Image degeneration caused by weather-related phenomena,

especially fog and haze, has different characteristics. There-

fore, we see the need for a new evaluation method being

able to evaluate the system performance on real data with

real reference measurements in a quantitative manner.

Adverse Weather Simulation Methods Considering ad-

verse weather scenarios, it is difficult to collect paired

data to train supervised algorithms. Many approaches cre-

ate synthetic data as for example rainy images by adding

streaks to clear weather images [23, 74, 53, 73] or raindrops

onto the windshield [65]. Recently, methods have been

developed to adapt daytime images for nighttime scenes

[58, 44]. For creating synthetic foggy images many exist-

ing methods are based on the well-known physical model of

Koschmieder [34] which is defined as follows:

I(x) = R(x)t(x) + L(1− t(x)). (1)

Hereby, I(x) is the foggy image at pixel x considered color

channel wise and R(x) is the respective value within the

clear image. L is the atmospheric light, also denoted as

airlight, which is the light being scattered by the atmosphere

reaching an observer captured by a camera [68]. t(x) is the

transmission defined as the scene radiance captured by the

camera and depends on the scene depth l(x) which is the

calculated distance of the considered pixel x to the cam-

era [56]. Based on Eq. (1), synthetic foggy images are cre-

ated by manipulating airlight and transmission of the clear

weather image depending on the respective scene depth

[41, 24, 57]. In order to capture training data under real

conditions impressive work has been done in [29, 5, 4, 28].

Datasets Existing adverse weather datasets can be divided

into synthetic and real weather scenarios. In [57, 64, 78,
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41, 24, 40] datasets are created with synthesized fog based

on Koschmieder’s physical model [34]. In contrast to the

synthetically generated datasets, real data is provided in

[2, 5]. In O-HAZE [5] and I-HAZE [4] 35 indoor and 45

outdoor pairs of images were captured with a professional

haze machine. Those datasets offer a good evaluation op-

portunity but are rather small. Furthermore, all of the in-

vestigated state-of-the-art approaches were tested by stan-

dard full reference image quality assessment metrics. Our

dataset contains more image pairs and offers a novel metric

enabling a quantitative measure and comparison of different

approaches.

Enhancement Methods Adverse weather conditions as

rain, fog or snow, as well as motion blur and any other type

of noise can affect the performance of cameras. Because

of its fundamental role, image denoising and reconstruction

are big research subjects in signal processing and computer

vision in general. Regarding image denoising, many tradi-

tional techniques based on spatial filtering and wavelet coef-

ficients [13] have been developed [1, 19, 18, 11, 59, 21, 52].

The famous block-matching and 3-D filtering (BM3D) ap-

proach [16] takes advantage of methods used within video

compression to remove Gaussian noise. More recently,

there have been techniques introduced for general image

denoising based on deep learning [75, 76, 38] with different

levels of noise type generalization. Current best performing

approaches are based on Generative Adversarial Networks

(GANs) [27]. By formulating an adversarial loss function,

two neural networks, called generator and discriminator,

work against each other until the generator ideally creates

images that are indistinguishable from real world images.

Generative Adversarial Networks have started with simple

tasks as generating digits, faces and simple classes [27] out

of random vectors. Now, they have found their way to

even more complex areas such as image manipulation [79],

style transfer [25, 80], image inpainting [17], image to im-

age translation [32] and super resolution [55, 37]. As an

alternative to classic unsupervised data clustering or auto-

encoders, it was shown that GANs can be successfully used

for representation learning [54, 9]. Regarding image de-

noising and deblurring, DeblurGAN [36] removes blur from

an image and additionally shows how object detection can

be improved by this procedure. Furthermore, several ap-

proaches have been presented in the area of image deraining

[74, 23, 12, 53]. While [23] is working with a decomposi-

tion of images into low-frequency and high-frequency lay-

ers and a CNN, a GAN was successfully applied in [74, 53].

Image De-fogging and De-hazing For many image de-

fogging and de-hazing algorithms, a physical model is used

to describe foggy conditions [30, 57, 10, 39, 42]. Based

upon Eq. (1), parameters as the atmospheric light and trans-

mission are estimated locally. In [30] for example, the dark

Figure 2: Scene setup for the dynamic scenario (top) and

the static scenario (bottom).

Daytime Nighttime

Figure 3: Photos of the static clear scenario for daytime

(left) and nighttime (right).

channel prior is used to remove haze from images. In [57]

the problem of semantic foggy scene understanding (SFSU)

is investigated by adding simulated fog to the Cityscapes

dataset [15]. The fog simulation is based on the standard

optical model [34] for daytime fog and the semantic seg-

mentation is performed with a dilated convolution network

(DCN) [71]. Based on the usage of a physical model, fur-

ther approaches were introduced in [10, 39]. DehazeNet

[10] estimates the airlight and the transmission separately,

while in [39] the parameters are estimated collectively to

avoid amplified errors. A summary of further recent meth-

ods is presented in [3] where several algorithms tackling

the image dehazing task are introduced, including GAN ap-

proaches such as CycleDehaze [20].

3. Dataset

In order to advance the evaluation of enhancement al-

gorithms in difficult weather situations, we have collected

a dataset in well defined weather conditions in a weather

chamber [14]. The used chamber is able to emit real fog

while the meteorological visibility is controlled by a vis-

ibility sensor. The meteorological viewing distance V is

defined by

V = −

ln (0.05)

β
, (2)
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Figure 4: RGB camera tonemapping from 16 bit to 8 bit im-

ages. The 12 bit images are first linearized to 16 bit accord-

ing to the camera characteristic.

where β is the physical attenuation constant. At the begin-

ning of the measurement, the whole chamber is flooded with

fog down to a visibility of 5 m. Afterwards, the fog slowly

dissipates during the recording while the current visibility

is continuously tracked. The natural dissipation takes about

10-15 min from 10-125 m but highly depends on the current

outside weather conditions. For dynamic measurements the

visibility can be stabilized to a certain visibility range by

gently adding fog when the visibility exceeds the desired

threshold.

Sensor Setup For collecting the dataset, a test vehicle was

equipped with state-of-the-art imaging, range and weather

sensors. Regarding image recording, a passive monocular

front-facing color camera (Aptina ar0230, 30 Hz, 1920 ×

1024) and an active NIR gated camera (BrightwayVision,

1280×720) were selected. The color camera provides 12 bit

high dynamic range images tonemapped to 8 bit LDR im-

ages following Figure 4. Due to its operating principle the

gated camera avoids early back scatter and serves as a quali-

tative upper bound achieved by hardware optimizations [7].

For range data acquisition a Velodyne HDL64 S3D laser

scanner is used. All sensors are time synchronized and ego-

motion corrected utilizing a proprietary inertial measure-

ment unit (IMU). The system operates at an overall sam-

pling rate of 10 Hz implemented in ROS. Thereby, the laser

scanner provides the strongest and the last echo of a re-

flected signal.

Dynamic Scenarios In order to collect reflective targets

for different distances, dynamic scenarios are conducted

as illustrated in Figure 2. Large Zenith Polymer panels

(0.5m× 0.5m) with diffuse reflectivities of 5 %, 50 % and

90 % are mounted at a height of 0.9 m and are carried from

the front of the car to the end of the chamber with constant

speed. The panels are moved away from the car to ensure

that the fog is not compressed in front of the target. Due

to the size and weight of the panels each target has to be

moved separately. During one recording the fog density is

kept constant within visibility ranges of 20-30 m, 30-40 m

and 40-50 m. After the recordings, the position of the tar-

gets are manually annotated while the distance is extracted

semi-supervised following [6] based on the last echo of the

lidar sensor. For evaluation we use all images from the

color camera running at 30 Hz resulting in approximately

1500 images for each target sequence recorded in the three

fog density ranges. Including clear reference data approxi-

mately 18000 annotated images are available for evaluation

in total.

Static Scenarios For being able to perform full reference

image quality assessment, the static urban scenario de-

scribed in Figure 2 is setup for daytime and nighttime con-

ditions. The scene contains several pedestrians, flower pots,

tables with chairs, an advertisement pole, a customer stop-

per, a park bench and a bicycle rack. Hereby, sensor data

is recorded during three iterations covering the continuous

changes in visibility ranges. For reference, the scenario is

recorded under clear weather conditions without any emit-

ted fog. In total, approximately 12000 static images with

different fog densities are available.

4. Metric

By using the measurements of the dynamic scenarios,

we introduce a new metric based on the intensity of the cal-

ibrated reflective targets. We calculate the RMS contrast

crms, given by

crms =

√

(I90 − I50)
2

2
+

(I50 − I5)
2

2
, (3)

where the raw intensities I5, I50, I90 for each target with re-

flectivities of 5 %, 50 % and 90 % respectively, are extracted

by manually labeled bounding boxes. Figure 5 shows the

extracted intensities over the distance of the reflective tar-

gets from the testing vehicle for clear and foggy conditions

with a visibility range of 30-40 m. Thereby, the intensi-

ties are averaged over depth bins resulting in the shown er-

ror bars. Images with disturbances as windshield wipers

are annotated and removed from evaluation. In Figure 5

three prominent maxima can be observed. The peaks high-

lighted with yellow background originate from the illumi-

nation sources mounted at the ceiling of the weather cham-

ber. The respective positions are marked in the scene setup

in Figure 2. Figure 6 illustrates the calculated RMS con-

trast from Eq. (3) within the three different visibility ranges.

As expected, the contrast is impaired for decreasing visibil-

ity. Since the range of the depth reference is limited by

the low performance of the lidar in fog, the contrast curves

stop when the reflective targets vanish in the lidar point-

cloud. Looking at the degeneration of the contrast for dif-

ferent distances, it can be seen that the chamber regions il-

luminated by the light sources are widened and lose rapidly
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Figure 5: Reference intensity measurements for clear con-

ditions (top) and for a fog density of 30-40 m (bottom). The

reference intensites for the three reflective targets with a

reflectivity of 5%, 50% and 90% are illustrated relative to

their distance. In the lower image it can be observed that for

low reflective targets the intensity curves increase caused by

the rising airlight per distance, while the intensity of high

reflective targets is attenuated. The decrease in intensity be-

tween the targets results in a total loss of contrast which is

shown in Figure 6.

in contrast. For the regions in-between, the illuminated ar-

eas lose the contrast almost completely making the image

reconstruction very difficult. Therefore, we split the evalu-

ation into dark and illuminated areas. Total scores are given

as an average for each of the regions separately.

In contrast to the dynamic scenarios, the static scenario

enables to quantify the amount of restored information in

form of full reference based evaluation metrics such as

LPIPS [77], MSE, PSNR, SSIM [67] and VIF [60]. Figure 7

visualizes LPIPS, SSIM and MSE as a function of meteo-

rological visibility for the three independent measurement

iterations, namely FogA, FogB and FogC.
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Figure 6: Reference contrast without enhancement for dif-

ferent fog densities shown from clear to increased fog lev-

els. The region of the chamber illuminated by light sources

are highlighted in yellow.

Label LPIPS[77] PSNR SSIM[67] MSE VIF[61]

PIX2PIXHD-BJ [8] 0.01379 29.7192 0.9565 247.2536 0.7488

PIX2PIXHD [66] 0.01280 29.4731 0.9529 258.2451 0.7408

PIX2PIXHD-CJ [8] 0.01684 29.0464 0.9539 252.4982 0.7147

FCN [49] 0.03913 23.7101 0.9001 634.1447 0.7424

FCN† [49] 0.07896 16.3522 0.7694 3591.658 0.7171

DCPDN [72] 0.05197 21.9583 0.8606 2182.039 0.6295

DCPDN† [72] 0.07581 16.0040 0.7823 3668.973 0.6134

PFF-NET [47] 0.04265 27.9973 0.9181 284.5090 0.5912

DEHAZENET [10] 0.09735 14.8190 0.7472 5003.525 0.5893

AOD-NET† [39] 0.08923 14.0910 0.7240 4410.643 0.5359

DEHAZENET† [10] 0.13308 13.6074 0.6676 5698.850 0.5047

CYCLEGAN† [20] 0.11873 13.8803 0.7164 3049.224 0.4199

PFF-NET† [47] 0.16579 14.7734 0.7194 5454.050 0.3976

Table 1: Quantitative enhancement results for the foggified

KITTI dataset. All methods except the methods marked

with † were finetuned on the KITTI dataset with additional

fog densities.

5. Experiments

In order to validate our novel metric, we evaluate dif-

ferent enhancement methods in the described dense foggy

conditions. For this purpose, we select several methods re-

cently presented at the NTIRE challenge [3], namely PFF-

Net [47], CycleGan [20] and FCN [49], but also estab-

lished methods such as AOD-Net [39], DCPDN [72] and

DehazeNet [10], as well as methods from other domains as

Pix2PixHD [66] and Clahe [70]. Since most of the tested

methods are only trained down to visibilities of 150 m, we

fine tune the methods, if possible, on higher fog densities
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Figure 7: Three different full reference metrics for each in-

dependent fog run FogA, FogB, FogC with continuously

changing fog density from V =10-125 m.

down to appprox. 20 m.1 Methods without finetuning are

kept as further reference and marked with †. To match the

increased fog density we apply Eq. (1) to the KITTI dataset

[26] following [57] in order to reach visibilities down to

approximately 20 m. The results on the KITTI validation

set are presented in Table 1. Nonetheless, the dataset it-

self shows only daytime scenarios without simulated light

sources in late night or twilight conditions. The presented

methods were trained on their default input image sizes, see

Table 4, and applied to our dataset with an image size of

1920× 1024.

All learned enhancement methods show different arti-

facts, especially close to the light sources or at the transi-

tion from darker to brighter areas. Figure 1 presents several

qualitative examples for a visibility range of 30-40 m. The

poor performance in these transition regions already indi-

cates that better simulation performance in such critical re-

gions will increase the overall enhancement performance in

difficult scenarios.

To further analyze the generalization ability, two dif-

ferent derivatives of Pix2PixHD [66] with data aug-

1The training data split contains equally weighted fog densities from

∞m - 20 m visibility.
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Figure 8: Visibility dependent full reference based evalua-

tion for the LPIPS metric [77] and the four best performing

methods based on contrast enhancement. Note that lower

scores are better in terms of the LPIPS metric. Interestingly,

the scores are higher for applying enhancement methods

compared to no enhancement. This is not demonstrating the

true enhancement performance as the reference clear image

(Figure 3) neither represents the best possible enhancement

result nor the training data distribution. It can be stated that

the images are semantically identical but differ in color style

leading to lower full reference based evaluation results.

METHOD DEFAULT SIZE

PIX2PIXHD 1248× 384

PIX2PIXHD-BJ 1248× 384

PIX2PIXHD-CJ 1248× 384

CYCLEGAN†
256× 256

AOD-NET† 640× 480

DEHAZE-NET 16× 16

DEHAZE-NET† 16× 16

PFF-NET 1248× 384

PFF-NET† 520× 520

DCPDN 512× 512

DCPDN†
512× 512

FCN 128× 128

Table 4: Default input image sizes for the different methods.

mentation were introduced. We use color jitter trans-

forms from PyTorch [51] with the following parameters:

brightness = 0.125, saturation = 0.5, hue = 0.2 and

contrast = 0.5. PIX2PIXHD-BJ only augments brightness

and contrast while PIX2PIXHD-CJ additionally augments

saturation and hue following [8]. Hence, the networks do
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Daytime Scores

METRIC LPIPS[77] PSNR SSIM[67] MSE VIF[61]

VISIBILITY V 10-40 m 40-75 m 75-125 m 10-40 m 40-75 m 75-125 m 10-40 m 40-75 m 75-125 m 10-40 m 40-75 m 75-125 m 10-40 m 40-75 m 75-125 m

DATASET 0.133 0.066 0.030 16.536 20.025 23.986 0.680 0.813 0.897 1485.548 675.181 268.602 0.759 0.741 0.675

FCN[49] 0.150 0.082 0.042 11.894 14.844 17.885 0.576 0.719 0.819 4266.039 2202.639 1073.552 0.787 0.716 0.643

AOD-NET† [39] 0.155 0.112 0.084 12.340 13.806 14.939 0.536 0.528 0.522 3814.738 2724.660 2088.643 0.631 0.624 0.577

DEHAZENET† [10] 0.120 0.056 0.039 17.293 18.787 19.600 0.675 0.818 0.865 1248.004 863.807 721.841 0.489 0.623 0.562

PFF-NET [47] 0.142 0.075 0.042 11.442 13.978 16.503 0.586 0.719 0.808 4717.768 2661.093 1468.997 0.443 0.542 0.535

FCN† [49] 0.150 0.077 0.049 16.299 19.160 21.554 0.681 0.747 0.756 1560.878 808.573 459.052 0.489 0.539 0.517

PFF-NET† [47] 0.130 0.065 0.041 16.043 20.794 25.025 0.661 0.838 0.907 1671.934 588.500 208.348 0.357 0.520 0.528

DCPDN [72] 0.130 0.066 0.034 15.794 17.534 20.218 0.674 0.755 0.797 1725.621 1187.259 625.004 0.476 0.495 0.481

CLAHE [70] 0.126 0.054 0.049 16.682 19.395 21.439 0.642 0.798 0.826 1438.851 758.978 469.573 0.349 0.452 0.441

DCPDN† [72] 0.135 0.062 0.035 16.618 20.286 22.546 0.658 0.757 0.783 1463.797 629.698 364.122 0.383 0.432 0.433

PIX2PIXHD [66] 0.146 0.061 0.041 14.244 17.898 20.162 0.595 0.772 0.822 2606.062 1078.579 632.362 0.217 0.421 0.490

PIX2PIXHD-BJ [8] 0.148 0.062 0.043 14.163 17.841 19.808 0.577 0.765 0.811 2702.028 1090.882 684.552 0.200 0.400 0.462

PIX2PIXHD-CJ [8] 0.205 0.117 0.096 13.877 17.426 19.272 0.539 0.743 0.784 2818.792 1193.507 773.717 0.173 0.358 0.411

CYCLEGAN† [20] 0.152 0.091 0.066 14.258 14.966 15.577 0.571 0.668 0.707 2472.775 2076.760 1803.073 0.222 0.331 0.342

Nighttime scores

METRIC LPIPS [77] PSNR SSIM [67] MSE VIF [61]

VISIBILITY V 10-40 m 40-75 m 75-125 m 10-40 m 40-75 m 75-125 m 10-40 m 40-75 m 75-125 m 10-40 m 40-75 m 75-125 m 10-40 m 40-75 m 75-125 m

DATASET 0.101 0.067 0.056 16.356 18.785 20.282 0.724 0.805 0.834 1530.795 872.267 611.921 0.529 0.638 0.661

FCN[49] 0.116 0.085 0.077 16.761 16.229 15.776 0.669 0.692 0.685 1373.256 1552.370 1720.260 0.439 0.554 0.580

AOD-NET† [39] 0.109 0.084 0.078 20.322 18.925 18.009 0.737 0.742 0.730 607.776 838.632 1029.609 0.363 0.463 0.491

DCPDN [72] 0.101 0.062 0.051 16.637 19.707 21.563 0.717 0.799 0.826 1450.630 711.037 456.233 0.356 0.430 0.445

DEHAZENET† [10] 0.113 0.073 0.061 10.823 11.680 12.771 0.620 0.711 0.750 5399.507 4447.837 3444.956 0.340 0.417 0.442

FCN† [49] 0.111 0.073 0.063 17.417 21.074 23.373 0.726 0.818 0.845 1218.643 524.433 302.125 0.317 0.397 0.416

PFF-NET [47] 0.106 0.072 0.064 16.571 17.630 17.270 0.686 0.748 0.750 1452.691 1123.258 1219.574 0.275 0.384 0.410

DCPDN† [72] 0.110 0.071 0.060 15.742 18.255 19.994 0.699 0.778 0.804 1760.583 989.804 654.898 0.284 0.339 0.355

PFF-NET† [47] 0.113 0.076 0.070 14.966 18.185 19.111 0.672 0.791 0.819 2143.134 995.687 802.029 0.184 0.322 0.350

CLAHE [70] 0.115 0.083 0.076 16.219 18.169 19.251 0.652 0.731 0.754 1575.560 998.911 774.356 0.235 0.308 0.326

CYCLEGAN† [20] 0.130 0.099 0.091 15.809 17.735 18.848 0.656 0.721 0.741 1719.124 1101.370 851.247 0.173 0.211 0.223

PIX2PIXHD [66] 0.173 0.158 0.160 13.604 14.246 14.528 0.593 0.635 0.632 2850.898 2446.887 2293.717 0.144 0.205 0.216

PIX2PIXHD-BJ [8] 0.168 0.169 0.174 12.741 14.122 14.740 0.554 0.592 0.585 3484.929 2522.743 2184.644 0.133 0.188 0.199

PIX2PIXHD-CJ [8] 0.227 0.227 0.226 12.509 13.215 13.202 0.512 0.541 0.534 3669.302 3101.872 3110.837 0.124 0.181 0.192

Table 2: Static evaluation scores for daytime (top) and nighttime illumination (bottom) settings. The table shows column

wise different metrics averaged within three different fog visibility ranges. Note that for the metrics LPIPS [77] and MSE

lower scores are better, while for SSIM [67], PSNR and VIF [61] higher scores are desired. The best and second best

performing models are marked for each metric and fog visibility. Best models are marked magenta and second best models

blue. The models are sorted according to the vif metric.

VISIBILITY 20-30 m 30-40 m 40-50 m Clear

DISTANCE 5-9 m 12-16 m 9-12 m 5-9 m 12-16 m 9-12 m 5-9 m 12-16 m 9-12 m 5-9 m 12-16 m 9-12 m

PIX2PIXHD-CJ [8] 0.146 0.064 0.087 0.346 0.145 0.192 0.438 0.369 0.286 0.440 0.426 0.424

PIX2PIXHD [66] 0.175 0.042 0.030 0.315 0.112 0.107 0.409 0.203 0.168 0.524 0.468 0.383

PIX2PIXHD-BJ [8] 0.142 0.030 0.052 0.252 0.091 0.074 0.363 0.151 0.158 0.473 0.485 0.389

CLAHE [70] 0.122 0.055 0.027 0.202 0.073 0.069 0.281 0.147 0.119 0.303 0.299 0.258

FCN† [49] 0.082 0.038 0.018 0.122 0.044 0.041 0.199 0.094 0.083 0.284 0.257 0.194

PFF-NET† [47] 0.096 0.047 0.018 0.125 0.050 0.035 0.190 0.092 0.069 0.267 0.213 0.164

DEHAZENET† [10] 0.098 0.036 0.020 0.137 0.048 0.040 0.204 0.091 0.078 0.272 0.202 0.128

DCPDN [72] 0.105 0.051 0.031 0.132 0.028 0.038 0.241 0.078 0.084 0.273 0.228 0.162

PFF-NET [47] 0.069 0.026 0.012 0.104 0.032 0.031 0.171 0.068 0.062 0.273 0.216 0.162

FCN[49] 0.063 0.026 0.014 0.094 0.030 0.027 0.183 0.067 0.066 0.269 0.205 0.151

DATASET 0.066 0.025 0.013 0.099 0.031 0.029 0.165 0.066 0.063 0.230 0.187 0.131

CYCLEGAN† [20] 0.053 0.033 0.023 0.104 0.043 0.053 0.213 0.061 0.090 0.271 0.258 0.240

AOD-NET† [39] 0.038 0.016 0.006 0.056 0.018 0.012 0.116 0.036 0.038 0.175 0.149 0.109

DCPDN† [72] 0.042 0.015 0.033 0.136 0.047 0.044 0.247 0.034 0.102 0.355 0.310 0.238

Table 3: Dynamic contrast evaluations for three regions in front of the testing vehicle within three different visibility ranges

and reference clear conditions. The distance range 9-12 m lays in-between the illumination sources and therefore shows the

lowest contrast. The best and second best performing models are marked for each visibility and region. Best models are

marked magenta and second best models blue. The models are sorted following the contrast results for a visibility 40-50 m

and the region 12-16 m.

not only learn to remove fog but also to revert disturbed

colors which has a positive effect on generalizing to real

adverse weather data.

Even though the two methods using data augmentation

achieve the best visual enhancement (see Figure 1), the

values for the full reference based evaluation metrics (Ta-

ble 1 and Table 2) aggravate. The downside of these two

methods is that the networks can not infer the present il-

lumination during training correctly which is unfavorable

when target and output image have to match precisely.
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Figure 9: Distance dependent contrast results for the four

best enhancement methods compared to the fog free refer-

ence input and clear conditions. In some regions the en-

hanced contrast overcomes the clear reference.

Full reference methods do a great job in assessing

whether semantics are correctly transferred between images

but are lacking in meaningfulness if two images differ only

in image color distribution but match in semantics. This is

interesting as almost all presented methods achieve lower

scores compared to no enhancement based on full reference

evaluation and Figure 8 as clear reference. Therefore, the

static evaluations do not necessarily represent the real vi-

sual enhancement. This behavior can be explained by two

reasons. The first reason is that the methods have been en-

tirely trained on a different dataset with a different color

distribution leading to a contrast enhancement but at the

same time change the color distributions towards the train-

ing domain. Facing this shortcoming in full reference based

evaluation methods, especially regarding adverse weather

conditions, it is interesting to assess the dynamic reflective

target curves. Table 3 and Figure 9 show the evaluations.

Given those results it is possible to reproduce the perfor-

mance ranking from the synthetic fine tunings in Table 1 to

the extent that models with data augmentation achieve bet-

ter contrast enhancements than without data augmentation.

Equipped with this knowledge the second reason be-

comes clear as well: Successful enhancement methods have

achieved higher contrast values than the fog free reference.

Hence, the network performed enhancement steps going be-

yond haze removal. Evidently, current de-hazing methods

are also capable to achieve general image enhancements.

6. Conclusion

In this paper we have benchmarked recent enhancement

methods in new challenging environment conditions. Es-

pecially in difficult illumination settings, e.g. in-between

illumination sources, current methods fail. As the pre-

sented methods do not incorporate simulation and model-

ing of different levels of disturbance caused by differently

mounted light sources, this can fuel the development of fu-

ture enhancement techniques. Additionally, the presented

benchmark dataset is large enough to enable elaborating

signal disturbances caused by light sources. Our introduced

benchmark data set does not only empower the development

of new vision based simulation and enhancement methods

but also offers the possibility for further signal improvement

by providing sensor data from other sensor types as gated

camera and lidar. Furthermore, it has been proven that full

reference based image evaluation methods do not provide

sufficient validity for an in depth enhancement assessment.

Effects coming along with real world conditions, as con-

trast and illumination, should be taken into account. Oth-

erwise, a well-founded comparison of different approaches

can not be assured as superior methods might be punished

because of the metrics lack in incorporating relevant infor-

mation. We therefore developed a novel metric addressing

these real world effects. Benchmarking state-of-the-art ap-

proaches shows how this novel metric leads to a meaningful

and more intuitive way of evaluating enhancement methods

in challenging environment conditions.
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